

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

COMPINED SC	SIENCE		06	:E2/22
CENTRE NUMBER		CANDIDATE NUMBER		
CANDIDATE NAME				

COMBINED SCIENCE

0653/32

Paper 3 (Extended)

October/November 2015

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 24 printed pages.

1 Fig. 1.1 shows a van being driven along a flat road at a constant speed. The arrows on the diagram represent the four main forces acting on the van.

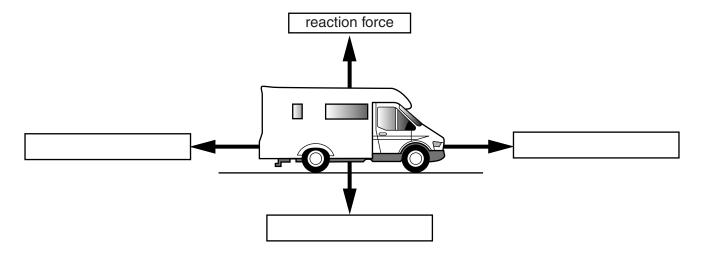


Fig. 1.1

(a) (i) On Fig. 1.1, use words from the list to complete the boxes next to the arrows to label the three missing forces.

Each word from the list can be used once, more than once or not all.

friction

gravity

driving

	mass pressure weight	[2]
(ii)	The reaction force is 30 000 N.	
	State the value of the downward force. Give a reason for your answer.	
	downward force =N	
	reason	
		[2]
(iii)	Explain where the downward force in (a)(ii) comes from.	

.....[1]

(b) Fig. 1.2 shows a speed/time graph for the van for a short journey.

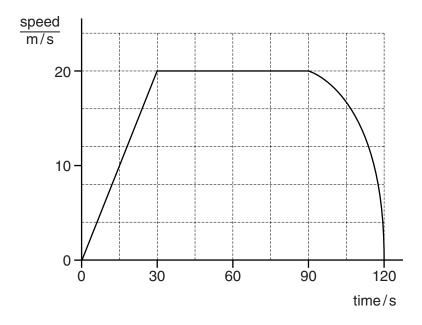


Fig. 1.2

(i)	Describe the motion of the van between 30s and 120s			
	[2			
(ii)	Use the speed/time graph in Fig.1.2 to calculate the distance travelled in kilometres in the first 90 s of the journey.			
	Show your working.			

distance travelled = km [3]

- 2 (a) Yoghurt is made by adding bacteria to milk.
 - The milk is heated to 85 °C, then allowed to cool before adding the bacteria.
 - The bacteria use the nutrients in the milk as their food source.
 - Lactic acid is a waste product which lowers the pH of the milk.
 - This causes the yoghurt to be made.

Explain why

(i)	the milk used to make yoghurt is heated to 85°C before it is used,	
(ii)	the milk is then cooled before adding the bacteria.	
		.[1]

(b) Many manufacturers use two types of bacteria to make yoghurt instead of just one. Both types produce lactic acid. They also produce other chemicals which are helpful in the process of making yoghurt as shown in Fig. 2.1.

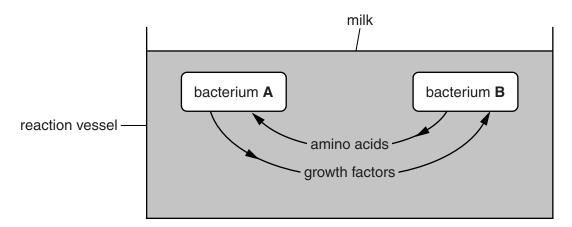


Fig. 2.1

Bacterium ${\bf B}$ produces amino acids by breaking down much larger molecules that are present in the milk.

(i)	Name these larger molecules.
	[1]
(ii)	Suggest how bacterium B breaks down these larger molecules into amino acids.
	[1]

	(iii)	Use the information in Fig. 2.1 to explain why manufacturers prefer to use two types of bacteria instead of one.			
		[2]			
(c)	Sor	me of the nutrients in two types of yoghurt are illustrated in Table 2.1.			

Table 2.1

nutrient	amount in 100 g			
nument	yoghurt C	yoghurt D		
protein/g	3.6	4.7		
carbohydrate/g	10.6	8.8		
fat/g	4.2	0.2		
calcium/mg	124	202		

Suggest and explain which type of yoghurt would be the better choice

(i)	for avoiding coronary heart disease,		
(ii)	for building strong bones.	[1]	
		[1]	

3 Petroleum (crude oil) is a mixture of compounds.

Some of these compounds are used as fuels.

(a)	(i)	Name the process used to separate the petroleum mixture into useful fractions.
		[1]
	(ii)	State and explain whether this process involves a physical or a chemical change.

(b) Fig. 3.1 shows how petroleum fractions can be separated in the laboratory.

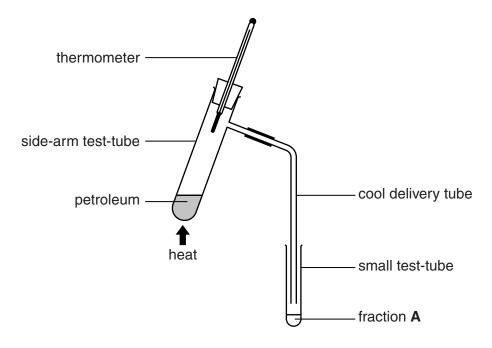


Fig. 3.1

The petroleum is heated and petroleum vapour is formed.

When the thermometer shows a temperature of $100\,^{\circ}\text{C}$, fraction **A** collects in the small test-tube.

The small test-tube used to collect the fraction is replaced with a fresh test-tube. Heating is continued, and three further fractions, $\bf B$, $\bf C$, and $\bf D$, are collected. All four fractions are shown in Fig. 3.2.

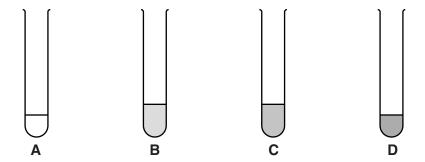


Fig. 3.2

The fractions become darker from A to D.

The fractions are collected over the temperature ranges shown in Table 3.1.

Table 3.1

fraction	temperature range/°C	
A	room temperature to 100	
В	100 to 150	
С	150 to 200	
D	200 to 250	

(i)	Use the information in Table 3.1 to state one trend in a physical property of the fractions A to D apart from colour.
	[1]
(ii)	Suggest how the average size of the molecules in the fractions changes from A to D .
	Explain your answer.
	[2]

(c)	Ethane is	one of the	compounds	found in	petroleum.
-----	-----------	------------	-----------	----------	------------

Complete the drawing of the structure of a molecule of ethane.

(d) The cracking of petroleum produces compounds which react readily with bromine.

State the **type** of compound produced by cracking that reacts with bromine.

[1]

[2]

Please turn over for Question 4.

4 Fig. 4.1 shows an electric fan heater used to keep people warm.

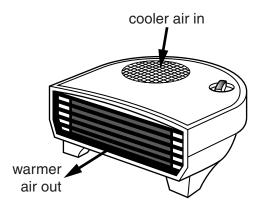


Fig. 4.1

- (a) The fan heater contains
 - a switch to control the mains electricity supply,
 - an electric heater to warm the air,
 - an electric motor to drive the fan,
 - a fuse to protect the circuit.

The fan must continue to work, even when the heater is not working.

Fig. 4.2 shows the circuit symbols for a heater, an electric motor and a fuse.

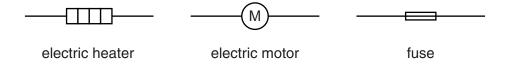


Fig. 4.2

On Fig. 4.3 complete the circuit diagram for the fan heater connected to the mains electricity supply, using the correct circuit symbols for the components listed above.

The mains electricity supply has been drawn for you.

mains electricity supply

(b) Another type of switch is also needed in the circuit as a safety device to cut off the heater if the temperature rises too much. This is called a thermal cut-out.

The thermal cut-out must switch off the heater but not the fan. The fan must continue to operate to reduce the temperature.

Fig. 4.4 shows the structure of this switch.

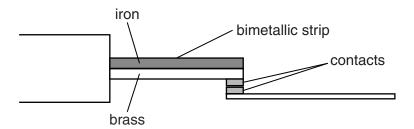


Fig. 4.4

- (i) On Fig. 4.3 in (a), mark with an X a point in your completed circuit where this switch could be put into the circuit to switch off the heater but not the fan. [1]
- (ii) As the temperature rises, the bimetallic strip bends upwards, so breaking the contact and switching off the heater.

	Explain in terms of the particles in the brass and iron why the strip bends in this way.
	[2]
(iii)	Suggest a suitable position inside the fan heater to place the thermal cut-out so that, when the temperature of the room is warm enough, the heater is switched off.
	Give a reason for your answer.

5 (a) Fig. 5.1 shows a male and a female gamete. They are **not** drawn to scale.

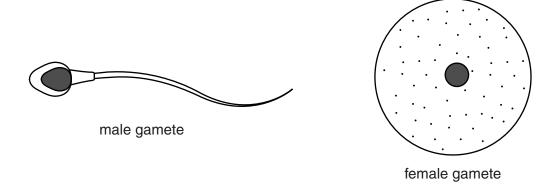


Fig. 5.1

(i)	The actual diameter of the female gamete is 100 micrometres.	
	Estimate a value for the length of the male gamete.	
	micrometres	[1]
(ii)	Estimate how many gametes are produced during the lifetime of the average human	
	male,	
	female	[2]
(iii)	State how the nucleus of the male gamete differs from the nucleus of a zygote.	
		[1]

(b) Fig. 5.2 shows a fetus developing in the uterus of a pregnant woman.

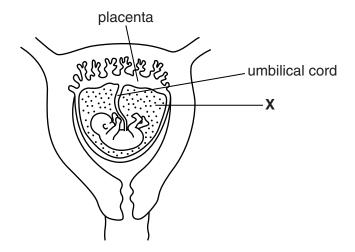


Fig. 5.2

	Nan	ne part X and describe its function.
	nam	e
	func	tion
		[2]
(c)	Duri	ng pregnancy a possible complication is narrowing of the blood vessels in the umbilical
	(i)	Explain why this affects the amount of blood flowing to and from the placenta.
		[1]
	(ii)	Describe how this will affect the fetus.
		[2]

6 Table 6.1 shows some elements placed in order of reactivity.

Table 6.1

potassium
sodium
calcium
magnesium
zinc
iron
hydrogen
copper

(a) Table 6.2 shows the reactions of some of the elements when added to dilute hydrochloric acid.

Table 6.2

element added to acid	observation
calcium	bubbles vigorously
copper	no reaction
zinc	

(i)	Complete Table 6.2 by adding the observation you would expect when zinc is added the acid.	to [1]
(ii)	Explain your answer to (a)(i) by referring to the reactivity series.	
		.[2]

(b) Fig. 6.1 shows what happens when a student places a zinc rod in copper sulfate solution.

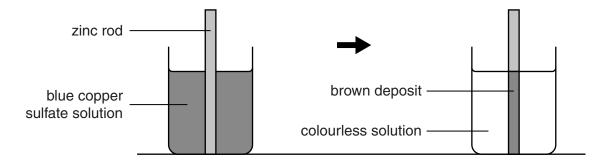
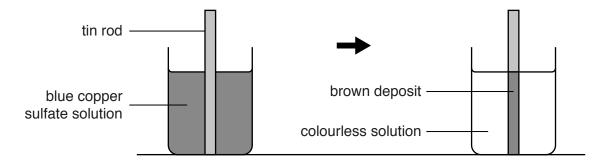


Fig. 6.1


The rod becomes coated in a brown deposit and the solution slowly changes from blue to colourless.

The zinc rod consists of zinc atoms.

Copper sulfate solution contains aqueous copper ions, Cu²⁺, which are coloured blue.

(i)	State the type of particles which form the brown coating on the zinc rod.	
		[1]
(ii)	Suggest why the colour of the solution changes during the reaction.	
		[1]
iii)	Use the reactivity series in Table 6.1 to explain why this reaction occurs.	
		[2]

(c) A student investigates the position of tin in the reactivity series. Her experiments are shown in Fig. 6.2.

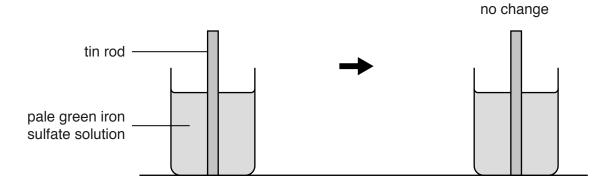
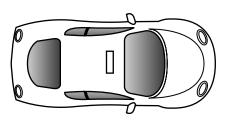


Fig. 6.2

(i) Add tin to the section of the reactivity series in Table 6.3.

Table 6.3


[1]

(ii)	By referring to Fig. 6.2, explain your answer to (c)(i).
	01

7 (a) A motorcyclist needs to see other vehicles and pedestrians.

Fig. 7.1 shows a motorcyclist from above and a car some distance behind him.

The motorcyclist looks in his rear view mirror to see the car.

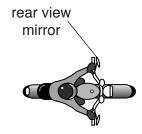


Fig. 7.1

On Fig. 7.2 construct an accurate ray diagram for the reflection in the motorcycle's rear view mirror. Use arrowheads to show the direction of the ray

car

Fig. 7.2

[2]

(b) The motorcyclist follows directions to his destination using his satellite navigation system (Satnav). The Satnav picks up signals from satellites orbiting the Earth to show the position of the motorcycle on a map displayed on the Satnav screen in front of him.

State the type of electromagnetic wave used by satellites sending signals to Earth.

.....[1]

(c)	The	motorcyclist travels along a street at night.
		street is lit by lamps which emit yellow light with a wavelength of 589 nanometres (nm) or \times 10 ⁻⁹ m.
	(i)	State the formula that relates the speed, frequency and wavelength of a wave motion. [1]
		[']
	(ii)	Calculate the frequency of the electromagnetic waves of yellow light from the street lights.
		Speed of light = 3×10^8 m/s.
		Show your working and state the unit of your answer.
		frequency = unit =[2]
(d)	The	motorcycle has two headlamps and a rear lamp, powered by a 6V battery.
	The	headlamps are identical, and are rated at 6V 36W.
	The	rear lamp is rated at 6V 6W and takes a current of 1A.
	(i)	Calculate the current taken by one headlamp when lit.
		State the formula used and show your working.
		formula
		working
		current = A [2]
	(ii)	The lamps are all connected in parallel.
		Calculate the total current drawn from the battery by the three lamps when all are lit.
		total current =A [1]

8 (a) Fig. 8. 1 shows part of a simple food chain in a field of wheat.

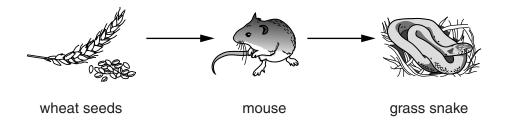
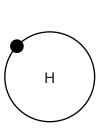


Fig. 8.1

(i)	There are three trophic levels in the food chain shown in Fig. 8.1.
	Define the term trophic level.
	[11]
(ii)	Explain why food chains usually have fewer than five trophic levels.
	[2]
(iii)	A badger also lives in the habitat. The badger eats all of the organisms in the food chain. These organisms and the badger form a food web.
	Complete Fig. 8.2 to show the food web.
	wheat seeds — → mouse — → grass snake
	Fig. 8.2 [2]
All f	food chains must have decomposers, though they are not always included in diagrams.
Ехр	plain the importance of decomposers in the habitat.

© UCLES 2015 0653/32/O/N/15

(b)


(c)	The wheat is harvested. Suggest two possible ways in which the mice respond to the remove of their food supply.
	1
	2

0653/32/O/N/15

9 A copy of the Periodic Table is printed on page 2	9	A copy of	f the F	Periodic 7	Table is	printed	on page	24
---	---	-----------	---------	------------	----------	---------	---------	----

(a)	(i)	State how the position of chlorine in the Periodic Table shows that it is a non-metal.					
		[1]					
	(ii)	State how the Periodic Table is used to predict the number of outer shell electrons in a fluorine atom.					
		[1]					
	(iii)	State how the number of outer shell electrons in an atom of an element can be used to predict whether the element is likely to be a metal or a non-metal.					
		[1]					
(b)	Hyd	rogen and chlorine react to form hydrogen chloride gas.					
	(i)	Write a balanced chemical equation for the reaction between hydrogen and chlorine.					
		[2]					

(ii) Fig. 9.1 shows the outer shell electrons in a hydrogen atom and in a chlorine atom.

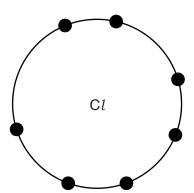


Fig. 9.1

Draw a diagram to show how these atoms form a hydrogen chloride molecule.

[2]

(c) Fig. 9.2 shows apparatus used to dissolve hydrogen chloride gas in water to form hydrochloric acid.

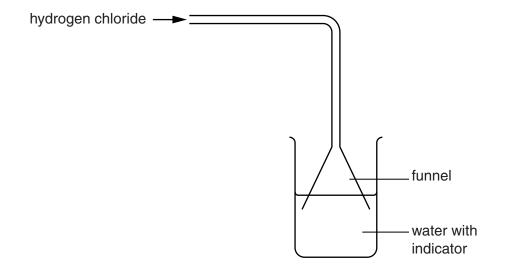


Fig. 9.2

The water contains full-range indicator (Universal Indicator) added before the hydrogen chloride dissolves.

(i)	State the colour of the indicator in pure water.	
		[1]

(ii) The indicator turns red. Suggest the change in pH.

DATA SHEET
The Periodic Table of the Elements

0	4 He lium	20 Neon 0	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon	222 Rn Radon 36		175 Lu Lutetium 71
II		19 Fluorine	35.5 C1 hlorine	80 Br romine	127 I	210 At		Y b Ytterbium 70
		16 Oxygen 8	32 S uffur 16	79 Se Selenium 34	128 Te Tellurium 52	209 Po Polonium 84		169 Tm Thulium
>		14 N trogen 7	31 P Phosphorus 15	75 As Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68
2			12 C Carbon 6	28 Si licon	73 Ge Germanium	Sn Tin 50	207 Pb Lead	
=		11 Boron	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium	204 T.1 Thallium		162 Dy Dysprosium 66
				65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65
				64 Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64
				59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63
		1		59 Co	103 Rh Rhodium 45	192 Ir Iridium		Samarium 62
	1 Hydrogen			56 Fe Iron	Bu Ruthenium 44	190 Os Osmium 76		Pm Promethium
				S5 Wn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Ne odymium 60
				Chromium	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59
				51 Vanadium 23	Nobium 41	181 Ta Tantalum		140 Cer ium
				48 T Titanium	2 Z Zirconium 40	178 Hf Hafnium 72		1
				Scandium	89 ×	139 Lanthanum 57 *	227 Ac Actinium + 89	id series series
=		9 Be Beryllium	Magnesium	40 Calcium 20	Strontium	137 Ba Barium 56	226 Ra Radium 88	* 58–71 Lanthanoid series † 90–103 Actinoid series
_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	Rb Rubidium 37	Caesium 55	223 Fr Francium 87	* 58–71 † 90–100
		1	III IV VI VII VII	III IV V VII V	III	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1

	_	
-		
'	a)
	=	5
	ũ	2
	2	5
	c	2
	c	3
	Φ)
	Ē	2
	7	7
	ב	2
	ב	5
	Ξ	
	Š	5
	٤	
	ά	3
	έ	
_	7	7
(`	J
٠	<u>''</u>	
	ă	Ś
	>	2
	α	3
٠	5)
_	Φ	2
	Ę	_
	۵)
		5
	5)
	₫)
	_	5
Ī	$\bar{\epsilon}$	5
)
Ē	_	
-		

L 580

S59 Nobelium

258 **Md**

257 **Fm**

252 **ES**

251 Californium

247 **BK**Berkelium

Curium

238

231 **Pa**

232 **Th** Thorium

a = relative atomic mass $\mathbf{X} = atomic symbol$

Key

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.